

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at opensource+fetch@github.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Contributing

Thank you for your interest in contributing to our fetch polyfill!

Note that we only accept features that are also described in the official fetch
specification [https://fetch.spec.whatwg.org]. However, the aim of this project is not to implement the
complete specification; just the parts that are feasible to emulate using
XMLHttpRequest. See Caveats [https://github.github.io/fetch/#caveats] for some examples of features that we are
unlikely to implement.

Contributions to this project are released [https://help.github.com/articles/github-terms-of-service/#6-contributions-under-repository-license] to the public under the
project’s open source license.

Running tests

Running npm test will:

	Build the dist/ files;

	Run the test suite in headless Chrome & Firefox;

	Run the same test suite in Web Worker mode.

When editing tests or implementation, keep npm run karma running:

	You can connect additional browsers by navigating to http://localhost:9876/;

	Changes to test.js will automatically re-run the tests in all
connected browsers;

	When changing fetch.js, re-run tests by executing make;

	Re-run specific tests with ./node_modules/.bin/karma run -- --grep=<PATTERN>.

Submitting a pull request

	Fork [https://github.com/github/fetch/fork] and clone the repository;

	Create a new branch: git checkout -b my-branch-name;

	Make your change, push to your fork and submit a pull request [https://github.com/github/fetch/compare];

	Pat your self on the back and wait for your pull request to be reviewed.

Here are a few things you can do that will increase the likelihood of your pull
request being accepted:

	Keep your change as focused as possible. If there are multiple changes you
would like to make that are not dependent upon each other, consider submitting
them as separate pull requests.

	Write a good commit message [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

Resources

	How to Contribute to Open Source [https://opensource.guide/how-to-contribute/]

	Using Pull Requests [https://help.github.com/articles/about-pull-requests/]

	GitHub Help [https://help.github.com]

window.fetch polyfill

The fetch() function is a Promise-based mechanism for programmatically making
web requests in the browser. This project is a polyfill that implements a subset
of the standard Fetch specification [https://fetch.spec.whatwg.org], enough to make fetch a viable
replacement for most uses of XMLHttpRequest in traditional web applications.

Table of Contents

	Read this first

	Installation

	Usage

	Importing

	HTML

	JSON

	Response metadata

	Post form

	Post JSON

	File upload

	Caveats

	Handling HTTP error statuses

	Sending cookies

	Receiving cookies

	Obtaining the Response URL

	Aborting requests

	Browser Support

Read this first

	If you believe you found a bug with how fetch behaves in your browser,
please don’t open an issue in this repository unless you are testing in
an old version of a browser that doesn’t support window.fetch natively.
This project is a polyfill, and since all modern browsers now implement the
fetch function natively, no code from this project actually takes any
effect there. See Browser support for detailed
information.

	If you have trouble making a request to another domain (a different
subdomain or port number also constitutes another domain), please familiarize
yourself with all the intricacies and limitations of CORS [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS] requests.
Because CORS requires participation of the server by implementing specific
HTTP response headers, it is often nontrivial to set up or debug. CORS is
exclusively handled by the browser’s internal mechanisms which this polyfill
cannot influence.

	This project doesn’t work under Node.js environments. It’s meant for web
browsers only. You should ensure that your application doesn’t try to package
and run this on the server.

	If you have an idea for a new feature of fetch, submit your feature
requests to the specification’s repository [https://github.com/whatwg/fetch/issues].
We only add features and APIs that are part of the Fetch specification [https://fetch.spec.whatwg.org].

Installation

npm install whatwg-fetch --save

As an alternative to using npm, you can obtain fetch.umd.js from the
Releases [https://github.com/github/fetch/releases] section. The UMD distribution is compatible with AMD and CommonJS
module loaders, as well as loading directly into a page via <script> tag.

You will also need a Promise polyfill for older browsers [http://caniuse.com/#feat=promises].
We recommend taylorhakes/promise-polyfill [https://github.com/taylorhakes/promise-polyfill]
for its small size and Promises/A+ compatibility.

Usage

For a more comprehensive API reference that this polyfill supports, refer to
https://github.github.io/fetch/.

Importing

Importing will automatically polyfill window.fetch and related APIs:

import 'whatwg-fetch'

window.fetch(...)

If for some reason you need to access the polyfill implementation, it is
available via exports:

import {fetch as fetchPolyfill} from 'whatwg-fetch'

window.fetch(...) // use native browser version
fetchPolyfill(...) // use polyfill implementation

This approach can be used to, for example, use abort
functionality in browsers that implement a native but
outdated version of fetch that doesn’t support aborting.

For use with webpack, add this package in the entry configuration option
before your application entry point:

entry: ['whatwg-fetch', ...]

HTML

fetch('/users.html')
 .then(function(response) {
 return response.text()
 }).then(function(body) {
 document.body.innerHTML = body
 })

JSON

fetch('/users.json')
 .then(function(response) {
 return response.json()
 }).then(function(json) {
 console.log('parsed json', json)
 }).catch(function(ex) {
 console.log('parsing failed', ex)
 })

Response metadata

fetch('/users.json').then(function(response) {
 console.log(response.headers.get('Content-Type'))
 console.log(response.headers.get('Date'))
 console.log(response.status)
 console.log(response.statusText)
})

Post form

var form = document.querySelector('form')

fetch('/users', {
 method: 'POST',
 body: new FormData(form)
})

Post JSON

fetch('/users', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json'
 },
 body: JSON.stringify({
 name: 'Hubot',
 login: 'hubot',
 })
})

File upload

var input = document.querySelector('input[type="file"]')

var data = new FormData()
data.append('file', input.files[0])
data.append('user', 'hubot')

fetch('/avatars', {
 method: 'POST',
 body: data
})

Caveats

	The Promise returned from fetch() won’t reject on HTTP error status
even if the response is an HTTP 404 or 500. Instead, it will resolve normally,
and it will only reject on network failure or if anything prevented the
request from completing.

	For maximum browser compatibility when it comes to sending & receiving
cookies, always supply the credentials: 'same-origin' option instead of
relying on the default. See Sending cookies.

Handling HTTP error statuses

To have fetch Promise reject on HTTP error statuses, i.e. on any non-2xx
status, define a custom response handler:

function checkStatus(response) {
 if (response.status >= 200 && response.status < 300) {
 return response
 } else {
 var error = new Error(response.statusText)
 error.response = response
 throw error
 }
}

function parseJSON(response) {
 return response.json()
}

fetch('/users')
 .then(checkStatus)
 .then(parseJSON)
 .then(function(data) {
 console.log('request succeeded with JSON response', data)
 }).catch(function(error) {
 console.log('request failed', error)
 })

Sending cookies

For CORS [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS] requests, use credentials: 'include' to allow sending credentials
to other domains:

fetch('https://example.com:1234/users', {
 credentials: 'include'
})

To disable sending or receiving cookies for requests to any domain, including
the current one, use the “omit” value:

fetch('/users', {
 credentials: 'omit'
})

The default value for credentials is “same-origin”.

The default for credentials wasn’t always the same, though. The following
versions of browsers implemented an older version of the fetch specification
where the default was “omit”:

	Firefox 39-60

	Chrome 42-67

	Safari 10.1-11.1.2

If you target these browsers, it’s advisable to always specify credentials: 'same-origin' explicitly with all fetch requests instead of relying on the
default:

fetch('/users', {
 credentials: 'same-origin'
})

Receiving cookies

As with XMLHttpRequest, the Set-Cookie response header returned from the
server is a forbidden header name [https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name] and therefore can’t be programmatically
read with response.headers.get(). Instead, it’s the browser’s responsibility
to handle new cookies being set (if applicable to the current URL). Unless they
are HTTP-only, new cookies will be available through document.cookie.

Obtaining the Response URL

Due to limitations of XMLHttpRequest, the response.url value might not be
reliable after HTTP redirects on older browsers.

The solution is to configure the server to set the response HTTP header
X-Request-URL to the current URL after any redirect that might have happened.
It should be safe to set it unconditionally.

Ruby on Rails controller example
response.headers['X-Request-URL'] = request.url

This server workaround is necessary if you need reliable response.url in
Firefox < 32, Chrome < 37, Safari, or IE.

Aborting requests

This polyfill supports
the abortable fetch API [https://developers.google.com/web/updates/2017/09/abortable-fetch].
However, aborting a fetch requires use of two additional DOM APIs:
AbortController [https://developer.mozilla.org/en-US/docs/Web/API/AbortController] and
AbortSignal [https://developer.mozilla.org/en-US/docs/Web/API/AbortSignal].
Typically, browsers that do not support fetch will also not support
AbortController or AbortSignal. Consequently, you will need to include
an additional polyfill [https://github.com/mo/abortcontroller-polyfill#readme]
for these APIs to abort fetches:

import 'abortcontroller-polyfill/dist/abortcontroller-polyfill-only'
import {fetch} from 'whatwg-fetch'

// use native browser implementation if it supports aborting
const abortableFetch = ('signal' in new Request('')) ? window.fetch : fetch

const controller = new AbortController()

abortableFetch('/avatars', {
 signal: controller.signal
}).catch(function(ex) {
 if (ex.name === 'AbortError') {
 console.log('request aborted')
 }
})

// some time later...
controller.abort()

Browser Support

	Chrome

	Firefox

	Safari 6.1+

	Internet Explorer 10+

Note: modern browsers such as Chrome, Firefox, Microsoft Edge, and Safari contain native
implementations of window.fetch, therefore the code from this polyfill doesn’t
have any effect on those browsers. If you believe you’ve encountered an error
with how window.fetch is implemented in any of these browsers, you should file
an issue with that browser vendor instead of this project.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

